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NOTE

The Effect of Interpolation Errors on the Lagrangian Analysis
of Simulated Turbulent Channel Flow

i. INTRODUCTION

The proliferation of codes for the direct numerical simula-
tion ol turbulent flows has stimulated interest in performing
analyses of Lagrangian turbulence statistics including the
tracking of ensembles of fluid particle paths. Among
the recent studies requiring Lagrangian data are those
exploring the relationship between Eulerian and Lagrangian
statistics [11, 16, 18], the physics of particle laden flows
[4,7,13], and the studies of momentum and vorticity
transport [2, 3, &, 15].

A principal difliculty with Lagrangian calculations is the
error associated with interpolation of the particle positions
and velocities. Accurate interpolation is required in order to
correctly follow particle paths as well as to sccure useful
predictions of the velocity derivatives, vorticity, and other
higher order quantitics along the trajactorics. In fact, Yeung
and Pope [17]7 found that for cases where the time step is
small enough 1o satisly the Courant condition, interpolation
is the major source of error. The degrec of accuracy required
of interpolation methods when the particle vorticity and
higher order Lagrangian statistics are desired is particularly
critical due to the significant high wavenumber content of
the velocity gradient fields,

The accuracy of an interpolation scheme is determined
by its ability to resolve the smallest scales in the flow,
A parameter which has been found useful in this regard
is kol Where k. is the largest resolved wavenumber,
and y is the Kolmogorov length scale. Several studies of
homogencous and isotropic turbulence [, 16, {77 have
shown that if k. 7> then the effect of interpolation
errors on single point Lagrangian velocity correlations is
relatively small, and that as k., n decreases the accuracy of
the interpolation method becomes increasingly important.
Yeung and Pope [17] also investigated higher order
statistics such as the fourth-order structure function and
found that values of k., # > 2 were required for accuracy in
this case. Prior studics of the interpolation errors associated
with Lagrangian statistics have concentrated on isotropic
Mows where it was possible to maintain k.7 > 1. The elfect
of interpolation error on the statistics in wall-bounded and
other engineering flows where k., 7 can become relatively
small has not yet been directly addressed. 1n this paper the
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accuracy of specific interpolation schemes used in these
flows and their effects on the turbulence statistics is
examined.

Pseudo-spectral interpolation methods in which a direct
summation of the finite Chebyshev-Fourier series is nade
at off-nodal points is known to offer optimal accuracy,
limited only by the number of modes or collocation points
used in a given calculation. However, the high cost of
tracking significant numbers of particles for any reasonable
length of time by this method usually eliminates this tech-
nique as a credible choice for production runs. Trilinear
interpolation, on the other hand, executes much faster
than pseudo-spectral methods, and has been used in some
studies, e.g., [2, 16]. It is known, however, to be much less
accurate than spectral interpolation and can be expected to
generate unacceptable errors for some quantities of interest,
particularly velocity derivatives and long time particle
trajectories.

The need for interpolation schemes which provide a
compromise between the speed of linear interpolation, and
the accuracy of pseudo-spectral methods has led to the
consideration of such approaches as 13-point cubic
splines {17], partial Hermite inferpolation [1, 10], and
Lagrangian interpolation of various orders [10]. The
present work analyzes the effect of interpolation error
on particle paths and Lagrangian statistics in a turbulent
channel flow for several different interpolation schemes
including tricubic Hermite and B-splines. Additionally,
frozen velocity fields of simulated channel flow are used to
illustrate the relative magnitude of these errors and to
examine interpoiation of velocity derivatives. We conclude,
It agrecment with previous studies {1, 107, that Hermite
interpolation offers significant advantages over other
approaches. It is also shown that direct differentiation of the
tricubic operator provides an efficient and reasonably
accurate means of interpolating derivative fields. )

2. INTERPOLATION METHODS

Four different interpolation methods, including pscudo-
spectral, lincar, cubic splines, and Hermite are compared.
The pseudo-spectral interpolation method follows the
development by Canuto er al. [5] and consists of a direct
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summation in spectral space of the contributions from each
point in the flow, For channel flow, Fourier series in the
spanwise and streamwise directions are used, with periodic
boundary conditions applied to the sides of the computa-
tional box, while Chebyshev polynomials are used in the
wall-normal direction, with no-slip and no-penetration
boundary conditions applied at the walls. The lincar inter-
polation method considered here is the standard eight-point
scheme utilizing the grid points immediately surrounding
the interpolation point.

The two other methods we examine represent schemes
which are more accurate than linear interpolation and less
expensive to compute with than pseudo-spectral interpola-
tion. The first is the cubic B-spline routine obtained from the
IMSL library, which is an extension of the 2D routine
developed by De Boor [6] The second scheme, tricubic
interpolation, is an extension of the bicubic scheme of Press
et al. [14] and is mathematically equivalent to the full 3D
Hermite interpolation scheme proposed by Balachandar
and Maxey [1]. Consequently, the terms tricubic and
Hermite may be used interchangeably to describe this
method. There are, however, some differences between the
present approach and that of Balachandar and Mazxey
and Kontomaris et al. [10]. In particular, we allow for
Hermite interpolation in all directions by estimating the
velocity at a point (x, y, z), using the cubic polynomial
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(zx 41— z)- The interpolation constants, ¢, are deter-
mined by requiring the velocity, first-order velocity
derivatives, and higher order velocity derivatives such as
&%u/dx 3y to agree with their exact values at the grid points
surrounding (x, v, z). To duplicate the Hermite interpola-
tion operator, the fields chosen are u, du/éx, du/dy, du/dz,
&%ufdx Oy, 0*u/dx 8z, 8*ufdy dz, and 8*ufdx dy dz. Further
details are given in [15].

The direct numerical simulation used in this study [9] is
of a channel flow with a wall Reynolds number, R, of 125,
where R, = u.h/v, his the channel half-width, u, = (t,./0)",
1, 15 the wall shear stress, v is the kinematic viscosity, and
p is the density. A time splitting technique with a Green
function correction was used to enforce continuity at the
walls [12]. The streamwise and spanwise directions
employed a uniform grid of 4x* =195 and 4z =9.8,
while a cosine mapping was used in the wall-normal
direction so that the distance between grid points varied
from Ay* =015 near the wall to dy* =6.1 at the center
of the channel, where y™ =u_y/v and y is the coordinate
normal to the boundary.
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The Kolmogorov length scale was estimated using the
relation n=(v%/e)"/*, where ¢ is the isotropic dissipation
rate. At ¥ =15 where the peak turbulence production
takes place, k,.,, 7 = 0.29, based on the vaijue of e* =0.1113,
as determined from the direct numerical simulation, where
et =vefu?, and k., ~ 20 as a result of the chosen grid. It
follows that interpolation inaccuracies can be expected to
significantly affect the Lagrangian statistics.

3. FIXED TIME INTERPOLATION ERRORS

Single time velocity and velocity derivative fields were
used to compare the accuracies of the interpolation
schemes. Consistent with the results of Balachandar and
Mazxey [ 1], pseudo-spectral methods were found to require
two orders of magnitude more CPU time per point than
linear interpolation and an order of magnitude more time
than Hermite or cubic spline interpolation. Both the
tricubic and cubic spline interpolation methods, however,
have some overhead or preprocessing associated with them.
In the case of cubic splines, this takes the form of solving a
N, x N, x N system of equations in order to determine the
spline functions, while the tricubic approach requires
spectral computation of seven nodal velocity derivatives.
Although the operation count suggests that the amount of
overhead associated with the cubic splines would be smaller
than that for the tricubic interpolation, in practice the
widespread availability of optimized FFT routines often
results in significantly less time being required. On a CRAY
YMP-8, for example, the advantage between the tricubic
approach over the optimized IMSL routine was found to be
better than 50:1. In fact, over 5000 spectral interpolations
could have been performed during the setup time for cubic
splines. Because of the disparity in overhead, Hermite
interpolation was found to be more economical than spline
interpolation, except for- exceptionally large numbers of
particles. This is despite the additional fact that once the
interpolation constants have been found, the execution time
for cubic splines is slightly faster than that for Hermite
interpolation.

The question of accuracy was studied here by comparing
the results of the linear, cubic spline, and Hermite interpola-
tion schemes to those for pseudo-spectral interpolation
which is considered to be exact. Linear interpolation was
found to be the least accurate, while Hermite interpolation
conformed most closely with the spectral results, in agree-
ment with Balachandar and Maxey [1] and Kontomaris
et al. [107]. The interpolation error was quantified using the
relative error estimate given by
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FIG. 1. Comparison of interpolation errors {or a fixed time velocity
field: [, trilinear; O, spline; 4, Hermite.

where N is the number of points tested on a: given y* level,
Ugpeetear TEPIESENLS the spectrally computed velocity, #y,,p 1S
the velocity determined ‘using the interpolation method
under consideration, and u,, is the averaged rms velocity.
The y* dependence of £, is aillowed here since we can
expect the interpolation errors to be strongly effected by the
varying mesh resolution across the channel and, as will
become evident below, by the differences in the nature of the
turbulence at different positions with respect to the wall,

Figure | shows the error for the interpolation of
streamwise velocity, u, as a function of y* for 250 particies
scattered randomly on each of 20 arbitrarily chosen p*
levels. The results show that both cubic spline and tricubic
interpolation offer much greater accuracy than does linear
interpolation and that tricubic is superior to cubic spline
interpolation. The rapid changes in E, with y *, particularly
for linear interpolation may be attributed in part to the
effect of intense underlying structures in the simulation,
which can cause significant interpolation errors for
individual fluid particles”which happen to be under their
influence. With increased sampling rates such variations in
E, should diminish, although the overall trend should
remain. In particular, the largest errors seem to appear near
y* =40, where the vortical structures tend to be centered.
The degree to which Hermite interpoiation is insulated from
such effects is a strong argument in its favor.

A similar comparison of interpolation error can be made
for the velocity derivatives. The interpolation methods
under consideration offer several ways to interpolate the
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velocity gradients at off nodal points. The most
straightforward approach is to spectrally differentiate the
velocity field, thereby creating a derivative ficld defined on
the grid points, and then using the various interpolation
methods as they have previously been developed. In the case
of cubic spline and tricubic-interpolation, however, this
approach requires new values for the interpolation con-
stants. An alternative approach, which avoids this extra
overhead, is to compute velocity derivatives by evaluation
of the differentiated forms of the previously derived velocity
interpolation formulas.

Figure 2 compares the errors for the Ju/dy lield for the
foliowing interpolation methods:

1. Linear interpolation of the spectrally differentiated
velocity field.

2. Differentiation of the cubic spline operator,

3. Cubic spline interpolation of the differentiated
velocity field.

4. Tricubic interpolation of the differentiated velocity
field.

5. Differentiation of the tricubic operator.

Plotted in Fig, 2 is the rms error computed via an adaptation
of (1) for the case of du/@y. The enormously increased error
associated with derivative interpolation is evident in the
magnitude of the error here in comparison to £, in Fig. 1.
Again the results indicate that Hermite interpolation of
the differentiated velocity field gives the most accurate
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FIG. 2. Comparison of interpolation errots for a fixed time velocity
derivative field du/dy: [1, trilinear intérpolation of du/dy; G, derivative of
Hermite u interpolation; A, Hermite interpolation of 8u/dy; + , derivative
of u spline interpolation; x , spline inierpolation of du/@y.
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results. However, the differentiated Hermite operator is
nearly as accurate as the direct Hermite interpolation, yet
has a significant advantage as far as the amount of com-
putation time required in comparison to the direct method,
since new interpolation constants are not computed. A
similar result occurs when the cubic spline interpolation of
the differentiated velocity field is compared to the differen-
tiated spline operator. It is clear that both Hermite methods
are significantly more accurate than cubic spline methods,
which are in turn more accurate than linear interpolation. It
also may be noted that the curves in Fig. 2 once again reflect
the activity of coherent structures in the flow which generate
locally intense regions of shear.

4, PARTICLE PATHS AND LAGRANGIAN STATISTICS

The interpolation errors associated with Lagrangian
statistics, defined by actual fluid particles traveling through
the time developing flow field, were explored using an
ensembile of paths obtained using the various interpolation
schemes. Sets of 250 particles with initial points randomly
scattered on each of five y* levels on the top and bottom
channel walls, so that statistics at each y* level are based on
500 particles, were generated. The particles were tracked
forward in time for ¢* =94 using a second-order
Runge-Kutta predictor-corrector scheme, where ¢+ =
v,

The ensemble averaged errors in the locations of the fluid
particles starting at y* =178 as a function of time are
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FIG. 3. RMS positional error for particles originating at y* =17.8:
, trilinear; — -—, spline; ———, Hermite.
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shown in Fig. 3, where the interpolation error is defined
here as

1 Np 172
Ex(t) = F ( z Eximcrp(r) - xspeciral(r)i 2) -

P An=1

As before, the resuits of the pseudo-spectral interpolation
are assumed to be exact. As scen in the figure, the position
errors increase with time, indicating that the particles
wander off from their correct paths for all of the non-spec-
tral interpolation schemes. Hermite interpolation, however,
can be seen to be approximately an order of magnitude
more accurate than linear interpolation and about three
times more accurate than cubic splines. This remained true
at each of the y* locations tested.

As any particular particle moves through the flow, the
rate at which its total positional interpolation error
increases depends upon where the particle is in relation to
the grid points, since all interpolation methods, by defini-
tion, agree at such points. This aspect of interpolation error
is made evident by comparing the time historics of the
Lagrangian velocity field associated with individual par-
ticles. Figure 4 shows this error in the interpolated velocity,
namely, |#inerp — Uspecreall fOr an arbitrarily selected particle
as a function of time, The symbols plotted along each curve
denote the times at which the particles have passed through
a grid plane. Since the interpolation is likely to be tem-
porarily more accurate when particles pass near grid planes,
it is not surprising to see the quasi-periodic nature of the

0.8

error

t+
FIG. 4. Typical velocity error for convecting fluid particle originating

atpt =246:

, trilinear; — - —, spline; ———, Hermite.
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error amplitude. The relative magnitude of the errors
between the interpolation methods are consistent with the
results of the previous section, so that both the amplitude
and minimum value of the error are smallest for tricubic
interpolation and largest for lincar interpolation.

The peculiarities of interpoiation error for convecting
fluid particles arc accented in the (», w) hodograph piot for
a typical particle given in Fig. 5, where v and w are the wall-
normal and spanwise velocities, respectively. Here, inter-
polation-induced sinusoidal variations of particle velocity is
reflected in the circular traces of the hodographs. The
tricubic scheme is most closely able to follow the correct
hodograph plot, while linear interpolation is entirely over-
whelmed by errors.

The pronounced interpolation error for velocity can be
expected to have some influence on statistics gleaned from
the particle paths. A particularly interesting eflect is
illustrated in Fig. 6, showing a plot of the Lagrangian
velocity autocorrelation coefficient, R, (1) =u(0) u(r)/
©(0) u(0) at y* = 12.0, computed using the various schemes.
Hermite interpolation appears to do an excellent job of cap-
turing this correlation while the splines also appear to be of
acceptable accuracy. The tritinear scheme, on the other
hand, tends to result in a lower peak value of R,,, a much
more rapid decay, and a very different shape near r=0. In
fact, the interesting rise in R, to a value greater than one,
which may be attributed to the presence of a Reynolds shear
stress in the flow field [2], is not well captured by the linear
scheme. As a result, the magnitude of such quantities as the
turbulent microscale and integral scale will be substantially
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FIG. 6. Lagrangian autocorrelation coefficient R, for fluid particles
originating at y* =12: , spectral; ——, Hermite; ——, spling;

— -—, trilinear.

in error. These results contrast somewhat with those of
Kontomaris er al. [ 10], who found that in the center of the
channel the value of R, computed from linear interpolation
tended to be greater than that obtained from a more
accurate Lagrangian interpolation scheme,

5. CONCLUSIONS

Previous studies investigating the effect of interpolation
error on turbuience statistics have shown that for cases
where k.. n>1, the flow is adequately resolved and the
effects of interpolation error can be kept relatively small. In
wall-bounded turbulence, such as considered here, however,
it is often not feasible to maintain this condition for
Reynolds numbers at which turbulence is self-sustained,
since the Kolmogorov scale tends to become small and the
number of Fourier modes included in the simulation is
limited. The present study suggests that the accuracies of
interpolation schemes do have a significant effect on
Lagrangian statistics and that Hermite interpolation is
substantially more accurate than either cubic splines or
trilinear interpolation.

The level of accuracy of the interpolation of velocity
derivatives is generally much less than that of velocities
themselves, although Hermite interpolation appears to
provide adequate performance. An important outcome of
the present comparisons is that it is considerably more
accurate to differentiate the cubic spline or tricubic
operators directly in order to obtain derivatives, than to use
linear interpolation from the spectrally differentiated
velocity field. Additionally, differentiation of the Hermite
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operator represents a much less costly alternative to both
pseudo-spectral interpolation and direct Hermite inter-
polation of the derivative field, with an acceptably small
decrease in accuracy. The suitability of Hermite inter-
polation for computing derivatives is borne out in recent
applications of Hermite interpolation to Lagrangian studies
of vorticity transport [15] and the Reynolds stress [8] in
which first- and second-order velocity derivatives are
computed along particle paths.

Finally, the effect of interpolation error on Lagrangian
velocities was shown to vary cyclically as fluid particles
travel through the flow. The cumulative effect of such errors
in position increases monotonically in time and can have a
strong effect on Lagrangian correlations and the scales
derived from them. Once again, Hermite interpolation
appears to successfully predict these quantities at a
reasonable computational expense in comparison to exact
spectral interpolation.
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